基于变压器的模型的突破不仅彻底改变了NLP字段,而且彻底改变了视觉和多模式系统。但是,尽管可视化和可解释性工具已用于NLP模型,但视觉和多模式变压器的内部机制在很大程度上仍然不透明。随着这些变压器的成功,了解它们的内部运作越来越重要,因为揭开这些黑色盒子将导致更有能力和值得信赖的模型。为了为这一任务做出贡献,我们提出了VL-Interpret,它提供了新颖的交互式可视化,以解释多模式变压器中的关注和隐藏表示。 VL解释是一种任务不可知论和集成的工具,(1)在视觉和语言组件的所有层中跟踪注意力头的各种统计数据,(2)通过易于阅读的热图和跨模式和模式的关注可视化。 (3)绘制视觉和语言令牌穿过变压器层时的隐藏表示。在本文中,我们通过分析KD-VLP(一种基于端到端的视觉视觉方式多模式变压器的模型)在视觉常识推理(VCR)和两个,两个,两个,两个,两个,两个,两个,两个,两个,两个,两个接线型VLP(VCR)的任务,两个,两个,两个,两个,两个,两个,两个,两个,两个,两个,两个vlp,两个vlp,两个vlp,两个vlp,两个,我们在本文中证明了VL解干的功能。视觉问题回答基准。此外,我们还提出了一些有关通过我们的工具学到的多模式变压器行为的有趣发现。
translated by 谷歌翻译
自我监督的视觉和语言预处理(VLP)旨在从大规模的图像文本数据中学习可转移的多模式表示形式,并在填充后在广泛的视觉范围内实现强大的表现。以前的主流VLP方法通常采用依靠外部对象检测器来编码多模式变压器框架中的图像的两步策略,该框架遭受了限制性对象概念空间,有限的图像上下文和效率低下的计算。在本文中,我们提出了一个对象感知的端到端VLP框架,该框架将来自CNN的图像网格特征直接馈送到变压器中,并共同学习多模式表示。更重要的是,我们建议执行对象知识蒸馏,以促进在不同语义级别的学习跨模式对齐。为了实现这一目标,我们通过将对象特征及其来自外部检测器的语义标签作为监督来设计两个新颖的借口任务:1。)对象引导的蒙版视觉建模任务的重点是在多模式变压器中强制执行对象感知的表示的学习; 2.)短语区域对准任务旨在通过利用语言空间中名词短语和对象标签之间的相似性来改善跨模式对齐。对各种视觉语言任务进行的广泛实验证明了我们提出的框架的功效,并且我们在现有的预科策略中实现了竞争性或优越的表现。
translated by 谷歌翻译
Few-shot semantic segmentation aims to learn to segment new object classes with only a few annotated examples, which has a wide range of real-world applications. Most existing methods either focus on the restrictive setting of one-way few-shot segmentation or suffer from incomplete coverage of object regions. In this paper, we propose a novel few-shot semantic segmentation framework based on the prototype representation. Our key idea is to decompose the holistic class representation into a set of part-aware prototypes, capable of capturing diverse and fine-grained object features. In addition, we propose to leverage unlabeled data to enrich our part-aware prototypes, resulting in better modeling of intra-class variations of semantic objects. We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes based on labeled and unlabeled images. Extensive experimental evaluations on two benchmarks show that our method outperforms the prior art with a sizable margin.
translated by 谷歌翻译
知识图(kg)推论是解决KGs自然不完整性的重要技术。现有的kg推断方法可以分为基于规则的基于和基于kg嵌入的模型。然而,这些方法同时不能平衡准确性,泛化,解释性和效率。此外,这些模型总是依赖于纯粹的三元族并忽略额外信息。因此,KG嵌入(KGE)和规则学习kg推理因稀疏实体和有限的语义而接近面临的面临挑战。我们提出了一种新颖且有效的闭环kg推理框架,与基于这些观察结果类似地运行作为发动机。 EngineKgi将KGE和RULE学习在闭环模式中互相补充,同时利用路径和概念中的语义。 KGE模块利用路径来增强实体之间的语义关联,并介绍解释性规则。通过利用路径作为初始候选规则,在规则学习模块中提出了一种新颖的规则修剪机制,并使用KG Embeddings以及提取更高质量规则的概念。四个真实数据集的实验结果表明,我们的模型在链路预测任务上占外的其他基线,展示了我们模型在KG推理中以闭环机制的关节逻辑和数据驱动方式的效力和优越性。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译